


additional terms describing the neuromuscular dynamics and

the actuator dynamics,

DEL(q)q̈ + CEL(q, q̇)q̇ +GEL(q) +MEL
ev (q, q̇) +WEL

= BEL
1 (ξ, u(t− τ)) +BEL

2 (ξ, v) +QEL
F Fx, (1)

where t ∈ R is time, and q(t) = (q1, ..., q5)
T ∈ R

5 are

time dependent joint angles, illustrated in Fig. 1. DEL(q) ∈
R

5×5, CEL(q, q̇)∈ R
5×5 and GEL(q) ∈ R

5 are generalized

inertia matrix, Coriolis matrix and gravity term, respectively.

In (1), MEL
ev (q, q̇) ∈ R

5 is a elastic-viscous vector expressing

passive moments introduced by the musculoskeletal system at

each joint and WEL ∈ R
5 is a term containing all the system

disturbance. On right hand side of (1), BEL
1 (ξ, u(t − τ))

represents joint actuation using FES at knee joints q3, q4 and

using motors at hip joints q1, q2, while BEL
2 (ξ, v) represents

for actuating q1, q2, q3, q4 with motors. u(t− τ) = (u1(t−
τ1), ..., u4(t−τ4))

T ∈ R
4 is the delayed control signal vector

in BEL
1 , with known constant τi ∈ R>0 (i = 3, 4) due to

EMD and τ1 = τ2 = 0 because motors are assumed to have

zero delay. v = (v1, ..., v4)
T ∈ R

4 is the control signal vector

in BEL
2 and ξ ∈ {−1, 1} is a switching signal, which is based

on muscle fatigue. A horizontal human assisting force Fx ∈
R, due to a walker, is introduced to avoid under-actuation.

Define error signal e = (e1, ..., e4)
T ∈ R

4, r =
(r1, ..., r4)

T ∈ R
4 and ec = (ec,1, ..., ec,4)

T ∈

R
4, with ec,i =

∫ t

t−τi
ui(θ)dθ (i = 1, 2), ec,i =∫ t

t−τi
sgn (ri(θ))ui(θ)dθ (i = 3, 4), such that ∀i = 1...4,

ei = qd,i − qi, (2)

ri = ėi + αei −
ξ + 1

2
βec,i, (3)

where α, β ∈ R>0 are constants to be designed and

qd = (qd,1, ..., qd,4)
T ∈ R

4 is the desired trajectory for

joint qi, (i = 1...4). Upper body position angle q5, instead

of following a precise trajectory, is maintained within an

approximate range by human assisting force Fx. Therefore,

qd,5 can be directly taken as qd,5 = q5 and it is unnecessary

to define e5. Open loop error dynamics regarding e, r can

then be rewritten as

D(q)

(
q̈d + αr − α2e− ṙ +

ξ + 1

2
β (αec − ėc)

)

+C(q, q̇)

(
q̇d + αe− r −

ξ + 1

2
βec

)

+G(q) +Mev(q, q̇) +D5(q)q̈d,5 + C5(q, q̇)q̇d,5

+W = B1(ξ, u(t− τ)) +B2(ξ, v) +QFFx, (4)

where G, Mev , W , B1, B2, QF are first 4 rows of GEL,

MEL
ev , WEL, BEL

1 , BEL
2 , QEL

F , respectively, while D ∈
R

4×4, D5 ∈ R
4 and C ∈ R

4×4, C5 ∈ R
4, are corresponding

submatrices of DEL and CEL, respectively.

B. Actuator Dynamics

Detailed expressions of B1(ξ, u(t− τ)), B2(ξ, v), QFFbx

in (4) will be derived in this subsection.

When joint qi (i = 3, 4) is actuated by FES, torque exerted

via corresponding quadriceps-hamstring (Q-H) muscle pair,

can be written as

TFES,i =
1 + sgn (ri)

2

µQ,iηQ,i (uact,Q,i − Ut,Q,i)

Us,Q,i − Ut,Q,i

−
1− sgn (ri)

2

µH,iηH,i (uact,H,i − Ut,H,i)

Us,H,i − Ut,H,i

, (5)

where, Q and H muscles are activated in turn determined by

sgn (ri) signals. ηQ,i, ηH,i ∈ R>0 are unknown q dependent

nonlinear functions containing torque-length/torque-velocity

relationship, while Ut,Q,i,Ut,H,i ∈ R>0 and Us,Q,i,Us,H,i ∈
R>0 are threshold and saturation stimulation levels, respec-

tively [15]. By defining n ∈ {Q,H}, i ∈ {3, 4}, the actual

input stimulation amplitude uact,n,i is assumed to always

operate beneath saturation level and is designed as

uact,n,i = KB,iui + Ut,n,i, (6)

where KB,i ∈ R>0 is a variable gain to be designed. µQ,i ∈
[ςQ,i, 1], µH,i ∈ [ςH,i, 1] in (5) are muscle fatigue states [10]

modeled as the following when EMD exists,

µ̇n,i = Γn,i(µn,i, ri(t− τi), ui(t− τi), t) (7)

=
1

Tf,n,i

(ςn,i − µn,i)an,i +
1

Tr,n,i

(1− µn,i)(1− an,i).

aQ,i = 1+sgn(ri(t−τi))
2

KB,iui(t−τi)
Us,Q,i−Ut,Q,i

, aH,i =
1−sgn(ri(t−τi))

2
KB,iui(t−τi)
Us,H,i−Ut,H,i

. Tf,n,i, Tr,n,i ∈ R>0 are

fatiguing and recovery constants while ςn,i ∈ (0, 1) is

minimum fatigue level.

When joint qi (i = 1...4) is actuated by electrical motor,

torque generated depends on the motor constant Km,i ∈ R>0.

Since B1 and B2 in (4) utilize different control signals, motor

torque TB1

motor,i(i = 1, 2) and TB2

motor,i (i = 1...4) will be

modeled differently, as

TB1

motor,i = Km,iKB,iui, TB2

motor,i = Km,ivi, (8)

where KB,i, ui and vi all preserve their previous definitions.

Therefore, with TFES,i (i = 3, 4), TB1

motor,i (i = 1, 2)
contributing to B1 when ξ = 1 and Tmotor,i (i = 1...4)
contributing to B2 when ξ = −1, considering EMD τi (i =
1...4) in B1, it can be written explicitly that

B1(ξ, u(t− τ)) =
1 + ξ

2
KBB̂1u(t− τ), (9)

B2(ξ, v) =
1− ξ

2

(
Kmv + B̃2

)
. (10)

KB = diag (KB,1, ...,KB,4), Km = diag (Km,1, ...,Km,4),

B̂1 = diag (Km,1,Km,2, Υ3, Υ4), Υi =
1+sgn(ri(t−τi))

2
µQ,iηQ,i

Us,Q,i−Ut,Q,i
− 1−sgn(ri(t−τi))

2
µH,iηH,i

Us,H,i−Ut,H,i

(i = 3, 4). B̃2 ∈ R
4 is the remaining actuation from B1 due

to EMD after switching, which can be assumed bounded and

will certainly disappear after time t∗ + max
i=1...4

{τi}, where t∗

is the time instant when ξ switches from 1 to −1.

Finally, QF is used to transfer Fx to generalized

force and is expressed as QF = (l1 cos (q1 + q3 + q5) +
l2 cos (q1 + q5) , 0, l1 cos (q1 + q3 + q5) , 0)

T .
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C. Fatigue Based Switching Logic

The torque generated by FES varies with muscle fatigue

and recovery, as in (7). Therefore, to obtain a consistent joint

torque a fatigue based switching logic determines the value

of ξ ∈ {−1, 1}, which further determines activation of either

(9) or (10). The fatigue based switching logic is designed as

ξ+ = −ξ− (e−
T

, r−
T

, µ−T

, ξ−)T ∈ D , (11)

where (·)−and (·)+ denote the value just before and after the

switch, respectively. Define µ = (µQ,3, µH,3, µQ,4, µH,4)
T ,

y = (eT , rT , µT , ξ)T , universe U = R
8×[ςQ,3, 1]×[ςH,3, 1]×

[ςQ,4, 1]× [ςH,4, 1]×{−1, 1} and set D is given by

D =
{
y ∈ U : ξ = 1, ∃n ∈ {Q,H} , i ∈ {3, 4} s.t.µn,i ≤ µ

}

∪ Dfξ ∪ Derξ ∪

(
Df ∩ Derj ∩

{
y ∈ U : ξ = −1,

∀n ∈ {Q,H} , i ∈ {3, 4} s.t.µn,i ≥ µ
})

, (12)

where µ, µ ∈ [max
i=3,4

{ςQ,i, ςH,i} , 1], µ < µ are constants

describing fatiguing and recovery limits to enable switching.

Dfξ, Derξ, Df and Derj are additional states dependent

conditions to be designed to address stability issues. Note

that ξ̇ = 0 when (eT , rTµT , ξ)T ∈ ∂D ∪ Dc, where ∂D
denotes boundary of D while Dc denotes the complement set

regarding universe U . (11), (12) indicates that ξ changes from

1 (or −1) to −1 (or 1) once certain criteria mainly determined

by fatigue states µ of Q-H muscle pairs are met. After one of

the fatigue states drops below the designed threshold, system

will utilize actuation (10) instead of (9) until all of the fatigue

states recover to the designed values.

D. Tracking Error Based Hybrid Dynamical System Model

According to definition in [8] and using (2), (3), (4), (7),

(9), (10), (11), (12), the error based hybrid neuroprosthetic

system, under fatigue based switching, tracking qd can be

modeled as

Hqd :

{
ẏ = F(y, u, v) y ∈ C

y+ = G(y−) y− ∈ D
, (13)

where state vector y = (eT , rT , µT , ξ)T . Jump set D is given

by (12) while flow set is C = ∂D ∪ Dc. Flow map F and

jump map G are given by

F = (r − αe+
ξ + 1

2
βec,Fr, Γ, 0)

T , (14)

G = (e−, r−(−ξ−), µ−,−ξ−)T ,

where Fr = q̈d+αr−α2e+ ξ+1
2 β (αec − ėc)+D−1

(
C
(
q̇d+

αe − r − ξ+1
2 βec

)
+ G + Mev + D5q̈d,5 + C5q̇d,5 +

W − B1(ξ, u(t − τ)) − B2(ξ, v) − QFFx

)
and Γ =

(ΓQ,3, ΓH,3, ΓQ,4, ΓQ,4).
In the end of this section, additional assumptions will be

made as the following: (A1) qd, qd,5 and their derivatives

are known and bounded. Fx is estimated as |Fx| ≤ F̄x,

F̄x ∈ R>0. QF is bounded because it consists of linear

combinations of sin (·) . Disturbance W is assumed to be

bounded. (A2) Mev(q, q̇), ηn,i, n ∈ {Q,H}, i ∈ {3, 4},

are bounded. (A3) Parameters in (12) can be designed so

that time between two switches are always greater than

max
i=1...4

{τi} .

III. CONTROL DEVELOPMENT

In this section, based on (13), stabilization of cases: ξ = 1
and ξ = −1 are considered as separate problems and

two different controllers are individually designed based on

Lyapunov stability analysis.

A. ξ = 1, Knee Joint Angle Actuated by FES

When ξ = 1, each knee joint is actuated by a Q-H muscle

pair using FES. Due to the main challenge induced by EMD,

a PD-based controller with additional variable gain KB and

a delay compensation term will be designed. Firstly, applying

feedback control law

u(t) = RKur(t). (15)

Constant Ku ∈ R>0, R = diag (1, 1, sgn (r3) , sgn (r4)).
Secondly, define Φ = 1

2Ḋr + e +D (q̈d + αė) + Cq̇ +G +
Mev + D5q̈d,5 + C5q̇d,5, Φd = D(qd)q̈d + C(qd, q̇d)q̇d +
G(qd) +Mev(qd, q̇d) +D5(qd)q̈d,5 + C5(qd, q̇d)q̇d,5, so that

‖Φ− Φd‖ ≤ ρ(‖z‖) ‖z‖, z = (eT , rT , eTc )
T , which can

be proved by mean value theorem [16], with ρ(‖z‖), a

positive, globally invertible nondecreasing real function. Fur-

ther, ‖Φd +W‖ ≤ Ψ and ‖QFFx‖ ≤ Q̄F F̄x, Ψ, Q̄F ∈
R>0, according to (A1), (A2). Finally, by defining Rτ =
diag (1, 1, sgn (r3(t− τ3)) , sgn (r4(t− τ4))), closed loop er-

ror dynamics is derived as

Dṙ =−
1

2
Ḋr − e+Φ− Φd +Φd +W −QFFx (16)

−DβKur +
(
DβRτ −KBB̂1

)
RτKur(t− τ).

The following properties and definitions will be used during

stability analysis.

σ1 ‖r‖
2
≤ rTDr ≤ σ2 ‖r‖

2
. (17)

λ1 ‖yer‖
2
≤

1

2
eT e+

1

2
rTDr ≤ λ2 ‖yer‖ ,

2

yer = (eT , rT )T . (18)

‖B∗r(t− τ)‖ ≤ σ3 ‖r(t− τ)‖ , |σ3| ≤ σ̄3. (19)

β ‖e‖ ‖ec‖ ≤
β2ε2

4
‖e‖

2
+

1

ε2
‖ec‖

2
. (20)

‖r‖ ‖r(t− τ)‖ ≤
ε2

2
‖r(t− τ)‖

2
+

1

2ε2
‖r‖

2
. (21)

−τi

∫ t

t−τi

u2
i (θ)dθ ≤ −e2c,i. (22)

Remark 1. (i) In (19), B∗ = D − β−1KBB̂1Rτ , σ3 =

max
{√

eig(B∗TB∗)
}

, where eig(B∗T

B∗) = {σ3,1...σ3,4}

are eigenvalues of B∗T

B∗. Variable gain KB introduced

in (9) provides some flexibility to manipulate σ3 to reach

desired ranges with bounded perturbations, therefore |σ3| ≤
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σ̄3 ∈ R>0. (ii) In (17), σ1, σ2 ∈ R>0 are minimal and

maximal eigenvalues of D(q), therefore σ1 = σ1(e, qd),
σ2 = σ2(e, qd). σ1, σ2 are upper and lower bounded due

to property of inertia matrix. In (18), λ1, λ2 ∈ R>0 are

constants. (20) and (21) are obtained by Young’s inequality

and constants ε2, ε2 ∈ R>0. (22) is obtained by Cauchy-

Schwarz inequality.

A Lyapunov function candidate can be designed as

VB1
=

1

2
eT e+

1

2
rTDr+

4∑

i=1

(P1,i + P2,i) , (23)

where P1,i = ωi

∫ t

t−τi

(∫ t

s
u2
i (θ)dθ

)
ds, P2,i =

σ̄3βKuε
2

2

∫ t

t−τi
r2i (θ)dθ, ωi ∈ R>0, i = 1...4.

Theorem 2. Provided σ1, λ1, σ̄3, ε2, ε2 from Remark 1, ω̄τ =
max

i
{ωiτi} (i = 1...4), control gains α, β, Ku and initial

conditions (eT0 , r
T
0 )

T of system (16) satisfying α− β2ε2

4 > 0,

f(eT , rT , qd,KB) = σ1 − σ̄3

2ε2 − σ̄3ε
2

2 > 0, σ1βKu −(
σ̄3

2ε2 + σ̄3ε
2

2

)
βKu−ω̄τK

2
u−K∗

1−K∗
2 > 0, (eT0 , r

T
0 )

T ∈ Ω0,

Ω0 =
{
(eT , rT )T : e, r ∈ R

4, λ2

∥∥(eT , rT )T
∥∥2+

4∑
i=1(

P1,i + P2,i

)
≤ λ1 min

i=1...4
{1, σ̄3βε

2

2τ2
i
Kuλ1

}ρ−2
(
2
√
K∗

1χ
)
−

λ2(Ψ+Q̄F F̄x)
2

4λ3K
∗

2

− δ1
}
, where K∗

1 ,K
∗
2 ∈ R>0 are constants,

Ku > K∗
1 + K∗

2 , Lyapunov function (23) converges semi-

globally from VB10
according to VB1

≤ VB10
e−%t +

Θ (1− e−%t). Constant δ1 ∈ R>0 can be designed arbitrary

small. χ, %,Θ ∈ R>0 are constants derived from subsequent

stability analysis.

Proof: Take time derivative of VB1
with control law

(15) and close loop error dynamics (16) substituted into the

equation and further apply property (17), (19), as well as

previously discussed bounded characteristics of ‖Φ− Φd‖,

‖Φd +W‖ and ‖QFFx‖,

V̇B1
≤− α ‖e‖

2
− βKuσ1 ‖r‖

2
+ σ̄3βKu ‖r‖ ‖r(t− τ)‖

+ β ‖e‖ ‖ec‖+ ‖r‖ ρ(‖z‖) ‖z‖+ ‖r‖
(
Ψ+ Q̄F F̄x

)

+

4∑

i=1

ωiτiK
2
ur

2
i+

4∑

i=1

σ̄3βKuε
2

2

(
r2i − r2i (t− τi)

)

−
4∑

i=1

ωi

∫ t

t−τi

u2
i (θ)dθ.

Further, by defining a set T = { i| τi 6= 0, i = 1...4} to deal

with the singularity issue when τi = 0 and using (20) and

(21) , V̇B1
can then be derived as

V̇B1
≤−

(
α−

β2ε2

4

)
‖e‖

2
−
∑

i∈T

1

τi

(
ωi − κi −

τi
ε2

)
e2c,i

−

(
σ1βKu −

(
σ̄3

2ε2
+

σ̄3ε
2

2

)
βKu − ω̄τK

2
u

)
‖r‖

2

+ ‖r‖ ρ(‖z‖) ‖z‖+ ‖r‖
(
Ψ+ Q̄F F̄x

)

−
∑

i∈T

(
(κi − γi)

∫ t

t−τi

u2
i (θ)dθ + γ

∫ t

t−τi

u2
i (θ)dθ

)
,

where constants κi, γi, ε
2 ∈ R>0 are always able to

choose such that κi > γi, ωi − κi −
τi
ε2

> 0. By com-

pleting squares, applying (22) and considering the fact

that
∫ t

t−τi

(∫ t

s
u2
i (θ)dθ

)
ds ≤ τi sup

t−τi≤s≤t

∫ t

s
u2
i (θ)dθ =

τi
∫ t

t−τi
u2
i (θ)dθ, V̇B1

will become

V̇B1
≤−

(
χ−

ρ2(‖z‖)

4K∗
1

)
‖z‖

2
+

(
Ψ+ Q̄F F̄x

)2

4K∗
2

−
∑

i∈T

(
(κi − γi)

τiωi

ωi

∫ t

t−τi

(∫ t

s

u2
i (θ)dθ

)
ds

+
2γiK

2
u

σ̄3βKuε2
σ̄3βKuε

2

2

∫ t

t−τi

r2i (θ)dθ

)
.

Provided gain and initial conditions in Theorem 2 satisfied,

χ is some constant such that χ ≤ min
{
α − β2ε2

4 , Π1, Π2

}
,

χ− ρ2(‖z‖)
4K∗

1

> 0, where Π1 = σ1βKu−
(

σ̄3

2ε2 +
σ̄3ε

2

2

)
βKu−

ω̄τK
2
u − K∗

1 − K∗
2 , Π2 = 1

τi

(
ωi − κi −

τi
ε2

)
. Using (18)

and the fact −‖z‖ ≤ −‖yer‖, as well as P1,i = P2,i = 0
when τi = 0, defining constant λ3 ∈ R>0 such that λ3 ≤

min
i∈T

{
χ − ρ2(‖z‖)

4K∗

1

, λ2(κi−γi)
τiωi

, 2λ2γiKu

σ̄3βε2

}
, V̇B1

can be further

derived as

V̇B1
≤−

(
χ−

ρ2(‖z‖)

4K∗
1

)
‖yer‖

2
+

(
Ψ+ Q̄F F̄x

)2

4K∗
2

−

4∑

i∈T

1

λ2

(
λ2 (κi − γi)

τiωi

P1,i +
2λ2γiKu

σ̄3βε2
P2,i

)

≤−
λ3

λ2

(
1

2
eT e+

1

2
rTDr +

4∑

i=1

(P1,i + P2,i)

)

+

(
Ψ+ Q̄F F̄x

)2

4K∗
2

.

Considering (23), V̇B1
≤ −λ3

λ2
VB1

+
(Ψ+Q̄F F̄x)

2

4K∗

2

can be

obtained and solved as

VB1
≤ VB10

e−
λ3
λ2

t +
λ2

(
Ψ+ Q̄F F̄x

)2

4λ3K∗
2

(
1− e−

λ3
λ2

t
)
.

(24)

B. ξ = −1, Knee Joint Angle Actuated by Motor

When ξ = −1, all the joints are actuated by electrical

motors. Following the same procedure as when ξ = 1, the

open loop error dynamics can be expressed as

Dṙ =−
1

2
Ḋr − e− B̂2v +Φ′ − Φ′

d,

+Φ′
d − B̃2 −QFFx +W, (25)

where Φ′ = 1
2Ḋr+e+D (q̈d + αė)+Cq̇+G+Mev+D5q̈d,5+

C5q̇d,5, Φ′
d = D(qd)q̈d+C(qd, q̇d)q̇d+G(qd)+Mev(qd, q̇d)+

D5(qd)q̈d,5 + C5(qd, q̇d)q̇d,5. According to (A1), (A2),

‖Φ′ − Φ′
d‖ ≤ ρ′(‖yer‖) ‖yer‖,

∥∥∥Φ′
d +W − B̃2

∥∥∥ ≤ Ψ′ and

‖QFFx‖ ≤ Q̄F F̄x, where yer = (eT , rT )T , Ψ′ ∈ R>0 and
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ρ′(‖yer‖) is real, positive, globally invertible, nondecreasing.

To facilitate the stability analysis, a Lyapunov function can-

didate is chosen as

VB2
=

1

2
eT e+

1

2
rTDr. (26)

Theorem 3. Lyapunov function (26) of system (25) converges

exponentially from any initial value, provided control law

v = K−1
m

(
r

‖r‖

(
ρ′(‖yer‖) ‖yer‖+Ψ′ + Q̄F F̄x

)
+Kvr

)
,

where control gain Kv ∈ R>0 is a constant.

Proof: Take time derivative of VB2
, substitute the error

dynamics (25) into the equation with input designed accord-

ing to Theorem 3 and finally use property (18),

V̇B2
=eT (r − αe) +

1

2
rT Ḋr + rT

(
−
1

2
Ḋr − e−Kmv

+Φ′ − Φ′
d +Φ′

d − B̃2 −QFFx +W
)

≤− α ‖e‖
2
+ ‖r‖

(
ρ′(‖yer‖) ‖yer‖+Ψ′ + Q̄F F̄x

)

− rT
( r

‖r‖

(
ρ′(‖yer‖) ‖yer‖+Ψ′ + Q̄F F̄x

)
+Kvr

)

≤− α ‖e‖
2
−Kv ‖r‖

2

≤−
λ4

λ2
VB2

,

where λ4 = min {α,Kv} . With initial value VB20
, VB2

can

be solved as

VB2
≤ VB20

e−
λ4
λ2

t
(27)

IV. STABILITY ANALYSIS OF THE HYBRID DYNAMICAL

SYSTEM

Considering (13), (14) with controllers designed according

to Theorem 2,3, all the states vary continuously within

flow set C and r immediately jumps with ξ ∈ {−1, 1}
changing its sign when reaching jump set D. Zeno behavior

never occurs because every jump immediately drives system

states from D to the interior of C with finite nonzero

distance to any boundary points, so that there must exist a

lower bounded time duration that system states will spend

flowing back to D for next jump. Therefore, state vector

y(t) = (eT , rT , µT , ξ)T behaves in a piecewise continuous

manner affected by ξ. Instead of analyzing system behavior

around some equilibrium points, stability of sets is motivated

when exploring hybrid dynamical systems [8]. In this section,

design of the switching logic (12) will be completed and it

can be shown that state vector of (13) converges to a set in

finite time.

Firstly, a Lyapunov function candidate for hybrid dynam-

ical system [8] is designed as

V =
1

2
eT e+

1

2
rTDr +

1 + ξ

2

4∑

i=1

(P1,i + P2,i) , (28)

where all notations preserve their definitions. To describe

the piecewise switching behavior, define sequence sw =
{swj}

jm
j=1 along state vector y, where jm ∈ Z>0, swj =

(tj , ξj , yj , Vj , V0,j , Ve,j) ∈ R≥0×{−1, 1}×U×R≥0×R≥0×
R≥0. j refers to the piece between (j − 1)th and jth jump.

tj ∈ [te,j−1, te,j ], j ∈ Z>0, te,0 = 0. te,j−1, te,j are time

instants when jump occurs and yj = (eTj , r
T
j , µ

T
j , ξj)

T =
y(tj), Vj = V (tj), V0,j = V (te,j−1, ξj), Ve,j = V (te,j , ξj).
Without loss of generality, y is assumed initially inside

flow set C with ξ = 1 so that ξj = (−1)
j+1

. Secondly,

basing on (24), choose ultimate bound of VB1
as Ωu =

δ2 +
λ2(Ψ+Q̄F F̄b)

2

4λ3K
∗

2

(δ2 arbitrarily small constant) and further

design Derξ, Derj , Dfξ in (12) as

Derξ =
{
(eT , rT , µT , ξ)T ∈ U : ξ = 1, (eT , rT )T ∈ Ω

′

0

}
,

Derj =
{
(eTj , r

T
j , µ

T
j , ξj)

T ∈ U : (eTj , r
T
j )

T ∈ Ω0 ∩ Ω1j

}
,

Dfξ =
{
(eT , rT , µT , ξ)T ∈ U : ξ = 1, ∀KB , s.t.f ≤ δ3

}
,

Df =
{
(eT , rT , µT , ξ)T ∈ U : ∃KB , s.t.f ≥ δ4

}
. (29)

Ω
′

0 =
{
(eT , rT )T : e, r ∈ R

4, λ2

∥∥(eT , rT )T
∥∥2+

4∑
i=1(

P1,i + P2,i

)
≥ λ1 min

i=1...4
{1, σ̄3βε

2

2τ2
i
Kuλ1

}ρ−2
(
2
√
K∗

1χ
)
−

λ2(Ψ+Q̄F F̄x)
2

4λ3K
∗

2

− δ
′

1

}
, δ

′

1 ∈ R>0, δ
′

1 < δ1. δ1, Ω0 is given

in Theorem 2 and Ω1j =
{
(eTj , r

T
j )

T : ej , rj ∈ R
4, 1

2e
T
j ej +

1
2r

T
j Drj ≤ max

{
Ωu, Ve,j−1 − δ5

}
, Ve,0 = V0,1

}
. f is given

in Theorem 2. δ3, δ4 are constants and 0 < δ3 < δ4. Constant

δ5 ∈ R>0 can be chosen arbitrarily small. Finally, stability

results of (13) are stated in Theorem 4.

Theorem 4. Provided y(t) = (eT , rT , µT , ξ)T is well defined

on U , Derξ, Derj , Dfξ and Df in (12) are designed as

(29), controllers are designed according to Theorem 2,3, then

tracking error yer = (eT , rT )T of (13) is globally uniformly

ultimately bounded, i.e., y ∈ U converges from any initial

value to a set ΩH =
{
(eT , rT , µT , ξ)T ∈ U :

∥∥(eT , rT )T
∥∥ ≤

Ωer

}
in finite time, where constant Ωer ∈ R>0 is given by

subsequent analysis.

Proof: Considering (23), (24), (26), (27), (28) and def-

inition of swj , when conditions in Theorem 4 are satisfied,

following properties can be obtained.

Vj ≤ V0,je
−ϕjtj + Sj

(
1− e−ϕjtj

)
, (30)

Ve,2k = V0,2k+1, k ∈ Z>0, (31)

|V0,2k − Ve,2k−1| = ∆|t=te,2k−1
∈ L∞, k ∈ Z>0, (32)

where ϕj , Sj ∈ R>0 are determined by (24), (27) and

S2k = 0, S2k−1 =
λ2(Ψ+Q̄F F̄b)

2

4λ3K
∗

2

, k ∈ Z>0. (31) holds

because P1,i = P2,i = ec,i = 0, i = 1...4 at time te,2k

due to assumption A3. ∆ =
∣∣ 4∑
i=1

(
P1,i +P2,i

)
+ 1

2

(
ė+αe−

βec
)T

D
(
ė+αe−βec

)
− 1

2

(
ė+αe

)T
D
(
ė+αe

)∣∣ and (·) ∈ L∞

denotes boundedness. Due to fatigue dependent C, D and the

assumption that y initially flows in C with ξ = 1, as well as

(30), (31) and (32), for any finite j, V0,j and te,j − te,j−1 are

also finite. Hence, two cases are discussed:

(i) When jm → ∞ as t → ∞, consider subsequence

{sw2k−1}
∞
k=1 and {sw2k}

∞
k=1, k ∈ Z>0. Due to (31) and Ω1
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in (29), forcing V0,2k+1 = Ve,2k ≤ max
{
Ωu, Ve,2k−1 − δ5

}
,

there must exist some finite integer k∗ >
Ve,1−Ωu

δ5
, such that

∀k ≥ k∗, V0,2k+1 ≤ Ωu. Besides, because of boundedness

property at odd jump indices given by (32) and monotonic be-

havior of Vj given by (30) during flow, it can be obtained that

∀k ≥ k∗, V0,2k+2 ≤ ∆|t=te,2k+1
+ Ve,2k+1 ≤ ∆|t=te,2k+1

+

V0,2k+1 ≤ max
ΩV

{∆}+Ωu, where ΩV =
{
(eT , rT )T : e, r ∈

R
4, 1

2e
T e + 1

2r
TDr+

4∑
i=1

(
P1,i + P2,i

)
≤ Ωu

}
. Therefore,

∀j ≥ 2k∗+1, V0,j ≤ max
ΩV

{∆}+Ωu.Using (30), it can be ob-

tained that Vj ≤
(
V0,j−Sj

)
e−ϕjtj +Sj ≤ max

{
V0,j , Sj

}
≤

max
ΩV

{∆}+Ωu. This means that ∀t ≥
2k∗∑
j=1

(
te,j−te,j−1

)
track-

ing error ‖yer(t)‖ ≤
√

V/λ1 ≤
√(

max
ΩV

{∆}+Ωu

)
/λ1 and

uniform ultimate boundedness result is therefore guaranteed.

(ii) When jm is finite as t → ∞, the proof is trivial because

there is no switch after time instant te,jm−1. Therefore,

∀t ≥
jm−1∑
j=1

(te,j − te,j−1), V decays continuously according

to V (t) ≤ V0,jme−ϕjm t+Sjm (1− e−ϕjm t) so that ‖yer(t)‖
has a uniform ultimate bound.

To sum up, (13) under designed controllers and switching

logic yields global uniform ultimate boundedness. It should

be noted that assuming y initially inside C with ξ = 1 does

not reduce generality because according to F , G, C and D, y
of any other initial conditions will enter C with ξ = 1 within

finite time and jumps and exactly same procedure of proof

can be applied after that.

V. SIMULATION RESULTS

In this section, simulation is conducted in a standing

scenario, where system is reduced to 3 DOF by assuming

both legs have exactly the same behavior. As a result, q2,

q4 of the swing leg are removed and q1, q3 will represent

for position angles of both stance legs. Torso position angle

q5 is controlled by human. Results illustrated in Fig. 2 show

that the standing posture described by q1, q3 are regulated

from q1 = 185◦, q3 = −10◦ to q1 = 190◦, q3 = −30◦

by using FES with 70 ms EMD at knee joints, motors at

knee and hip joints. FES and motors collaborate according

to switching logic and designed control laws, which not only

guarantee stability of the hybrid dynamical system, but also

allow muscle fatigue states to decrease and recover between

desired values µ = 0.6 and µ = 0.85.

VI. CONCLUSION

In this paper, a multi-DOF hybrid neuroprosthesis, inte-

grating a modified PD-based robust controller and a VSC to

control FES and motors, is developed to address problems

associated with muscle fatigue, EMD and model uncertainty.

The hybrid dynamical system model is formulated to design

switching logic and analyze stability. Globally uniformly

ultimately bounded tracking is proven, with demonstration in

the simulation to accomplish a standing task. Future studies

will include optimal trajectory planning, input saturation and
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Figure 2. Simulation result in a standing scenario

output constraint problems, so that simulations and experi-

ments can be conducted in more complicated scenario.
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